EnzyChrom[™] Glucose Assay Kit III (EGL3-100)

Quantitative Colorimetric Glucose Determination

DESCRIPTION

Glucose ($C_6H_{12}O_6$) is a key diagnostic parameter for many metabolic disorders. Increased glucose levels have been associated with diabetes mellitus, hyperactivity of thyroid, pituitary and adrenal glands. Decreased levels are found in insulin secreting tumors, myxedema, hypopituitarism, and hypoadrenalism. Simple, direct and high-throughput assays for measuring glucose concentrations find wide applications in research and drug discovery.

BioAssay Systems' glucose assay kit uses a single Working Reagent that combines the enzyme reaction and color reaction in one step. The color intensity of the reaction product at 565 nm is directly proportional to the glucose concentration in the sample.

KEY FEATURES

Sensitive and accurate. Use as little as 20 μL sample. Linear detection range in 96-well plate: 0.03 to 2 mM (0.54 mg/dL to 36 mg/dL) glucose.

Simple and high-throughput. The procedure involves addition of a single working reagent and incubation for 30 min at room temperature.

APPLICATIONS

Direct Assays: glucose in serum, plasma, urine, saliva, milk, culture medium and other biological samples.

Drug Discovery/Pharmacology: effects of drugs on glucose metabolism.

Food and Beverages: glucose in food, beverages etc.

KIT CONTENTS

Assay Buffer:	10 mL	GDH:	120 µL
NAD/MTT:	1 mL	Diaphorase:	120 µL
Glucose Standard:	1 mL (300 mg/dL)		

Storage conditions. The kit is shipped on ice. Store all components at -20°C. Shelf life: 6 months after receipt.

Precautions: reagents are for research use only. Normal precautions for laboratory reagents should be exercised while using the reagents. Please refer to Material Safety Data Sheet for detailed information.

SAMPLE PREPARATION

Saliva samples should be centrifuged for 5 min at 14,000 rpm prior to assay. Milk samples should be cleared by mixing 100 μ L 6 M HCl and 600 μ L milk. Centrifuge 5 min at 14,000 rpm and transfer supernatant into a clean tube. Add 170 μ L 6 M NaOH per mL supernatant. Mix well and centrifuge again at 14,000 rpm for 5 min. The supernatant can be assayed. The dilution factor in this procedure is *n* = 1.36.

Samples can be analyzed immediately after collection, or stored in aliquots at -20° C. Avoid repeated freeze-thaw cycles. If particulates are present, centrifuge sample and use clear supernatant for assay.

ASSAY PROCEDURE

Equilibrate all components to room temperature. During experiment, keep thawed GDH and Diaphorase in a refrigerator or on ice.

1. Standards and samples: for 2 mM standard, mix 48 μL 300 mg/dL standard with 352 μL dH₂O. Dilute standard in dH₂O as follows.

No	2 mM STD + H ₂ O	Vol (µL)	Glucose (mM)
1	200 µL + 0 µL	200	2.0
2	120 µL + 80 µL	200	1.2
3	60 µL + 140 µL	200	0.6
4	0 µL + 200 µL	200	0

Transfer 20 µL standards and samples into separate wells.

- Prepare sufficient Working Reagent (WR) by mixing for each standard and sample well: 80 µL Assay Buffer, 1 µL GDH, 1 µL Diaphorase and 8 µL NAD/MTT in a clean tube. Transfer 80 µL WR into each reaction well. Tap plate to mix briefly and thoroughly.
- 3. Incubate 30 min at room temperature. Read optical density at 565 nm.

CALCULATION

Subtract blank OD (water, #4) from the standard OD values and plot the Δ OD against standard concentrations. Determine the slope and calculate the glucose concentration of Sample as follows:

$$[Glucose] = \frac{OD_{SAMPLE} - OD_{BLANK}}{Slope} \times n \quad (mM)$$

where OD_{SAMPLE} , OD_{BLANK} are optical density values of the sample and water, respectively and *n* is the sample dilution factor.

Conversions: 1 mg/dL glucose equals 55.5 µM, 0.001% or 10 ppm.

Notes: (1) If the calculated sample glucose concentration is higher than 2 mM in colorimetric assay, dilute sample in dH_2O and repeat the assay. Multiply result by the dilution factor, *n*. (2) To determine glucose in phenol red culture medium, dilute both sample and glucose standards in the same glucose free medium for colorimetric assay.

MATERIALS REQUIRED, BUT NOT PROVIDED

Pipetting devices, centrifuge tubes, clear flat-bottom 96-well plates (e.g. VWR cat# 82050-760), and plate reader.

Standard Curve in 96-well plate assay in water.

LITERATURE

- Cho SJ, Cho CH. (2015). Interference Reduction in Glucose Detection by Redox Potential Tuning: New Glucose Meter Development. Anal Sci. 31(7):705-10.
- Kim DM, Kim MY. (2013). Electron-transfer mediator for a NADglucose dehydrogenase-based glucose sensor. Anal Chem. 85(23):11643-9.
- Saleh FS, Mao L. (2012). A promising dehydrogenase-based bioanode for a glucose biosensor and glucose/O2 biofuel cell. Analyst. 137(9):2233-8.